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A reformulation of the mathematical foundations of quantum mechanics is pre- 
sented. This new framework is based on the concepts of measurement, generalized 
action, and a unique universal influence function. The main axiom is that the 
probability of a measurement outcome is the sum (or integral) of the influences 
between pairs of alternatives that result in the outcome when the measurement 
is executed. The framework provides answers to various puzzling questions of 
traditional quantum mechanics. Moreover, it gives a realistic model that extends 
the usual quantum mechanical formalism. 

1. INTRODUCTION 

Although quantum mechanics is over 90 years old, it still contains many 
perplexing mysteries. As evidence for the dissatisfaction with the subject, 
there are at least six major approaches to the foundations of quantum mech- 
anics [see Gudder (1988a) for a list of references]. Why are researchers in 
this field so discontent that they are continually manipulating its fundamen- 
tal axioms? There are several reasons for the present state of flux. Although 
quantum mechanics has been eminently successful and has made many cor- 
rect and precise predictions, we still lack a deep understanding of its founda- 
tions. Quantum mechanics, as it now stands, consists of a cookbook of 
seemingly ad hoc rules and recipes. We do not really understand where these 
rules come from and why they work, but must simply accept them on blind 
faith. If progress is to be made, we must obtain a deeper grasp of the subject. 

The situation seems to be similar to the first 100 years after the discovery 
of the calculus by Newton and Leibnitz. During that period, the calculus 
was spectacularly successful even though it did not have a rigorous basis. 
Since its foundations were rooted in an ill-defined concept of infinitesimals, 
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one had to proceed carefully to avoid contradictions. Important progress in 
mathematical analysis had to wait until a rigorous basis was fashioned by 
Cauchy, Weierstrass, Riemann, and others. Only then was calculus com- 
pletely understood and only then could mathematical analysis develop into 
the magnificent monument it is today. 

In a similar way, because of its lack of a rigorous foundation, quantum 
mechanics has its own logical problems as demonstrated by the plague of 
infinities and divergences in quantum field theory. Quantum mechanics at 
present cannot adequately explain and describe the plethora of"elementary" 
particles, nor has a successful theory of quantum gravity been developed. It 
must be granted that toward these ends, quantum chromodynamics, quan- 
tum gauge theories, and superstring theories are being intensely pursued. 
However, despite these efforts, these theories have exhibited very little pre- 
dictive power. 

In traditional quantum mechanics it is postulated that the (pure) states 
of a physical system are represented by unit vectors in a complex Hilbert 
space H and the observables are represented by self-adjoint operators on H 
(Gudder, 1988a; yon Neumann, 1955). If V e i l  represents a state and the 
self-adjoint operator A represents an observable, then the probability that 
the observable has a value in the Borel set A when the system is in state V 
is given by HPa(A)vll 2, where pA is the spectral measure for A. There is, of 
course, a standard recipe for determining the self-adjoint operator for vari- 
ous common observables. For example, consider a spinless, one-dimensional 
particle. In this case, we take H= L2(R, dx). The position operator is given 
by Qf(x)=xf(x)  and the momentum operator by P f ( x ) = -  ih(df/dx)(x). 
Moreover, following the Bohr correspondence principle, the energy observ- 
able is represented by the operator/7= p2/2m + V(Q), where Vis the poten- 
tial energy function. To describe the dynamics of the system, we assume that 
the state is a function of time V(t) and postulate that V(t) evolves according 
to Schr6dinger's equation ih ~V / ~t = I-Iv. 

Although the previous approach is that taken by most elementary 
textbooks on the subject, there is another formalism that is usually used in 
more advanced high-energy physics studies. This formalism t~ollows ideas of 
Feynman (1949; Feynman and Hibbs, 1965), which prescribes the existence 
of an amplitude function f It is then postulated that the amplitude V(x) 
that an observable X has a value x is the sum (or integral) o f f  over the 
various physical alternatives that result in x when X is executed. In this way, 
the state V is derived from the amplitude function f But what space fl is f 
summed over? Feynman usually takes f~ to be a space of continuous paths 
and V(x) is then written in terms of a path integral. Although this path 
integral is physically heuristic, it is not, in general, rigorously defined. More- 
over, according to the standard Copenhagen interpretation, such paths are 
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not even supposed to exist for a quantum particle. Nevertheless, these 
methods have proved highly successful in high-energy studies such as in 
quantum electrodynamics. 

These traditional approaches bring to mind some puzzling questions. 
Various axiomatic frameworks have been proposed to answer these ques- 
tions, but some of their arguments and conclusions remain unconvincing 
[we again refer the reader to Gudder (1988a) for references]. A typical set 
of questions is the following. 

(1) Where does the Hilbert space H come from? 
(2) Why are states represented by vectors in H and observables by self- 

adjoint operators on H? 
(3) Why does the probability have its postulated form? 
(4) Why do the position and momentum operators have their particular 

form? 
(5) Where do the Bohr correspondence principle and Schr6dinger's 

equation come from? 
(6) Why does a physical theory which must give real-valued results 

involve a complex amplitude or state? 
(7) Why must a quantum particle exhibit wave behavior (wave-particle 

duality)? 
(8) Must quantum mechanics be nonrealistic (a quantum system only 

has properties when they are observed)? 
(9) Is there a realistic description for quantum mechanics (hidden vari- 

ables model)? 

In this investigation, we shall attempt to answer these questions and 
others that we shall consider later. In doing this, we shall need a reformula- 
tion of the mathematical foundations of quantum mechanics. This will also 
involve a reformulation of the basic tenets of probability theory. The recent 
works that are most closely related to ours are those due to Jouseff (1990) 
and Hemion (1988, 1990). Our approach has been inspired by seminal ideas 
of Feynman (1949; Feynman and Hibbs, 1965). 

2. GENERALIZED ACTION AND UNIVERSAL 
INFLUENCE FUNCTION 

Let 5 p be a physical system. We assume that at each time instant, Y 
has a unique configuration (or state, or alternative). We denote the set of 
possible configurations by ~ and call ~ a sample space. I fX is a measurement 
on 5O, then executing X results in a unique outcome depending on the 
configuration co of 5 ~ In this way, X can be identified with a function 
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X: f2~R(X) ,  where R(X) is the range of  X. To be precise, we a define a 
measurement to be a map X:f2 ~ R(X) satisfying: 

(M1) R(X) is the base space of a measure space (R(X), Ex, lax). 
(M2) For  every xeR(X),  X -  l(x) is the base space of a measure space 

(x- '(x),  y~, la~). 

We call the elements of  R(X),  X-outcomes, and the sets in Zx ,  X-events. 
Notice that X - 1 (X) corresponds to the set of configurations resulting in the 
outcome x when X is executed. We call the set X - l ( x )  the X-fiber over x. 
The measures lax and la~, xeR(X),  represent a priori weights due to our 
knowledge of  the system. (For  example, we might know the energy of the 
system or we might assume that the energy has a certain value.) In the case 
of total ignorance, these weights are taken to be counting measure in the 
discrete case and a uniform measure in the continuum case (Gudder, 
1985, 1988a-c, 1989). 

The measurements correspond to the observables of  traditional quan- 
tum mechanics. Notice that at this stage, we do not have a Hilbert space 
and we do not have self-adjoint operators representing observables. As we 
shall later show, these, as well as the other quantum mechanical constructs, 
can be derived from deeper fundamental principles. Moreover, this frame- 
work gives a realistic theory, since a configuration co determines the proper- 
ties of  the system independent of  any particular measurement. The con- 
figurations can also be viewed as hidden variables, since an co e f2 completely 
determines the result of  all measurements simultaneously. In fact, measure- 
ments are quite similar to the dynamical variables of  classical mechanics and 
this fact will be exploited in the next section. 

We next assume the existence of  a real-valued function S: f~ --* ~, which 
we call the generalized action of  the system 5e. The function S depends on 
our model of  50 and can also depend on our state of knowledge of  5 e. 
Such an S is frequently derived in Lagrangian formulations of  classical and 
quantum mechanics and is closely associated with fundamental variational 
principles. Hemion relates S to the "length" of discrete paths in Minkowski 
space-time (Hemion, 1988, 1990), but we shall not restrict ourselves to 
this particular model and shall assume its general existence (Gudder, 1991). 
Moreover, we assume the existence of an influence function G: ~ --* R and 
define the influence between co, co'ef)~ to be F(co, co'), where 

F(co, co') = G[S(co) - S(CO')] (2.1) 

Following Hemion (1988, 1990), we now make a fundamental reformu- 
lation of  the probability concept. We postulate that the probability 
Px,s (x) of  an X-outcome x is the sum (or integral) of  the influences between 
each pair of configurations that result in x upon executing X. In precise 
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mathematical form, we postulate that F(co, a / )  is integrable over 
X -  ~(x) x X -  l(x) and that the probability density Px, s(X) is given by 

Px,s(x)=fx_l(x)fx_l(x)F(o),~ol)p)(do~)p~(dro') (2.2) 

Moreover, to ensure that Px,s(X) is indeed a probability density, we must 
assume the following normalization condition: 

fR Px, s(x) ~x(dx) = 1 (2.3) 
(x) 

If  BeZx is an X-event, we define the (X, S)-probability of B by 

Px, s (B) = f~ ex, s (x) 12x(dx) (2.4) 

At this point it is not clear that Px, s is really a probability measure on Zx, 
since it is not clear that Px,s(X) is nonnegative. However, we shall show 
later that G has a special form which implies the nonnegativity of Px.s (x). 
For this reason, Px, s is indeed a probability measure on Zx which we call 
the S-distribution of X. 

We can extend this theory to include expectations of functions on ~. 
Let g: f~ ~ ~ be a function that is integrable along X-fibers. We then define 
the (X, S)-expectation of g at x by 

Ex's(g)(x)= fx-'(x) fx-%, g(c~176 co') l~:(d(o) r 

This equation is the natural generalization of (2.2) from a probability to an 
expectation. If  this last expression is integrable, then the (X, S)-expectation 
of g is given by 

Ex.s (g) = ~ Ex.s (g)(x) 12x (dx) (2.5) 
JR (x)  

We can also use this formalism to compute probabilities of events in f~. Let 
A _~ f~ and denote the characteristic function of A by ZA. If  ZA is integrable 
along X-fibers, in analogy with classical probability theory, we define the 
(X, S)-pseudoprobability of A by Px,s(A)=Ex,s(ZA). It follows from (2.3) 
and (2.5) that Px,s(f~) = 1 and Px, s is countably additive. However, ['x,s 
may have negative values, which is why we call it a pseudoprobability. 
Nevertheless, there are a-algebras of subsets of f~ on which Px,s is a prob- 
ability measure. For example, ifA = X -  ~(B) for BeZx, then it can be shown 
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that Px, s(A)=Px,s(B). Hence, in this case, Px, s reduces to the probability 
distribution Px, s. 

Until now, we have not imposed any conditions on the influence func- 
tion G except measurability. It turns out that, due to fundamental physical 
principles, G can be uniquely specified. First, it is not difficult to justify that 
G should be continuous. It is also clear that F(co, ~o')=F(co', co); that is, 
influence is symmetric. It follows that G should be an even function. Since 
a configuration co certainly influences itself, it is reasonable to assume that 
F(o~, co) r  so G(0) r  In classical mechanics, two different configurations 
have no influence on each other. Since we want to include such possibilities, 
we can assume that there exist co, co'eft such that F(co, co')=0; that is, G 
must have a zero. 

We shall require one more condition which will essentially specify G. 
Hemion (1988, 1990) has introduced the following property. A function 
u: N ~ ~ is causal if 

u(O,) = 0 =~ ~ [u(~b + 0,) + u(q~ - Oi)] = 0 (2.6) 
i = l  i = 1  

for all ~b~R. We now argue that G should be causal. If  O=S(co)-S(co'), 
then G(O) is a measure of influence. In measuring a total influence, each 0 
term is accompanied by a ( - 0 )  term. Assuming evenness, the left side of 
implication (2.6) can be written 

G(O,)+ ~ G ( - 0 s ) = 0  (2.7) 
i = 1  i = l  

Equation (2.7) states that a total influence due to a finite number of config- 
urations vanishes. We argue that a vanishing total influence should be invari- 
ant under an arbitrary phase shift ~b and obtain the right side of implication 
(2.6). Hemion (1990)justifies (2.6) in a different way. He employs the prin- 
ciple of strong causality; that is, the future cannot influence the past. He 
contends that in the discrete path model, the function G'(O)=G(O+ c~) 
would be the influence function for a larger configuration space ~ '  in the 
future, where ~b represents the future influences. Since a vanishing present 
influence must not be affected by future influences, we again conclude that 
G is causal. 

Hemion (1988) has proposed that G should have additional properties 
such as periodicity and monotonicity and has characterized the functions 
having all these properties. The author has proved the following generaliza- 
tion of Hemion's characterization (Gudder, 1991). 

Theorem 1. If  u: R ~ ~ is causal, continuous, and has a zero, then there 
exists an a > 0  such that u(O)=u(O) cos aO for all 0 ~ .  
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We conclude from Theorem 1 that an influence function G is essentially 
unique and in fact, G(O) = G(0) cos aO. This shows that a quantum system 
automatically possesses a periodic behavior and has an intrinsic wavelength. 
In a sense, we have derived the de Broglie wave associated with a quantum 
particle (de Brog!ie, 1990). By a change of scale, we can assume that G(0) = 
1, or alternatively we can absorb G(0) into the normalization measure/ Ix .  
Similarly, by a change of  scale, we can assume that a =  1, or alternatively 
we can absorb a in the definition of  the generalized action S. We then call 
G( O) = cos 0 the universal influence function. 

We now employ the universal influence function G in our previous 
probabilistic formulas. Equation (2.1) now becomes 

F(CO, co') = cos[S(CO) - S(CO')] (2.8) 

Substituting (2.8) into (2.2) gives 

ex,s(x)= ..f . ' ,x)  co4S(co)- s(co')l 

l f x  fx {ei[S('~176176176 
-1(x) -l(x) 

= fx_,(x) eiS(~') l-~(dco) fx_,(x) e-iS(~ lJ~(dco ') 

f x l-fix(dco) 2 = e 's(~ (2.9) 
-~(x) 

We callfs (co) = e is(~~ the S-amplitude function and we define the (X, S)-wave 
function by 

fx e iS(c~ l~}(dco) (2.10) fx, s(X) = -'(x) 

From (2.9) and (2.10) we have 

Px, s(X) = [ fx.s(X) I 2 (2.11) 

If  B~Ex, applying (2.4) gives the (X, S)-probability of B, 

Px, s(B) = j~ I fx.s(x)12 ~x(dx) (2.12) 

It follows from (2.3) that fx.s is a unit vector in the Hilbert space Hx = 
LZ(R(X), Zx, I~x) and this is where the Hilbert space comes from. 
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We have thus derived the Feynman amplitude function fs  (Feynman, 
1949; Feynman and Hibbs, 1965) from deeper physical principles. Equation 
(2.10) justifies Feynman's prescription that the amplitude of an outcome x 
is the sum (integral) of the amplitudes of the configurations (alternatives) 
that result in x. [In the Feynman model the integral (2.10) is nonrigorous, 
but there are discrete models in which (2.10) can be made mathematically 
precise (Gudder, 1988e; Marbeau and Gudder, 1989, 1990). Moreover, we 
have shown that the quantum state can be represented by a wave function 
fx, s which is a unit vector in the Hilbert space Hx. If we introduce the self- 
adjoint operator ]? on Hx defined by Xg(x)= xg(x), then (2.12) becomes 

Px, s (B) = I1PX'(B) fx, s II 2 

Hence, we obtain the self-adjoint operator representing the measurement X 
and have derived the usual probabilistic formula for its distribution. 

The space ~ gives a realistic pictm:e of the physical system in which all 
properties and measurements exist simultaneously. The probabilistic 
behavior results from the fact that nature only supplies us with the know- 
ledge contained in the generalized action S or equivalently the amplitude 
functionfs, We can only obtain information about the system by performing 
measurements. But a measurement X only gives the partial view (or projec- 
tion) of reality contained in the Hilbert space Hx. A different measurement 
Y gives another partial view Hy, but we may never obtain a complete picture. 
This also explains the puzzling "reduction of the wave-packet" (or state) 
feature of quantum mechanics. If we think offs  as the state, fs  is not reduced 
by a measurement X, it is merely replaced by fx, s so as to incorporate our 
knowledge of the result of executing X. 

Continuing the study of our probabilistic formulas, applying (2.5) gives 
the (X, S)-expectation of the function g, 

Ex,s (g )=Ref~(x ) f  x l(x) g(O))fS(cO)~(dcO) 

• ~ f~(o)') II~c(dco ') ~x(dx) (2.13) 

We define the (X, S)-amplitude average of g at x by 

fx g(co)f~((o) la~v(dco) f ~ : , ~ ( g ) ( x )  = - ' (~  (2.14) 
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We can then rewrite (2.13) as 

? 
Ex.s(g) = R e  / fx.s(g)(x)f*s(X) px(dx) 

.I R ( x )  

= Re( fx ,  s (g), fx,s) (2.15) 

Notice that (2.15) is an inner product  formula similar to that found in 
traditional quantum mechanics. Finally, for A _  s the (X, S)-pseudoprob- 
ability becomes 

Px, s (A) = Re( fx , s  (Z~), fx, s) (2.16) 

where, by (2.14), 

fx A(co) u~(dco) (2.17) 

3. TRADITIONAL QUANTUM MECHANICS 

For  simplicity, we consider a single, spinless, one-dimensional particle, 
although this work can be easily generalized to three dimensions. Spin will 
be taken into account later in this section. We take our space of  possible 
configurations to be the phase space 

n = R  2= {(q,p) '  q , p ~ )  

The two most important measurements are the position Q and momentum 
P given by Q(q, p)= q, P(q, p)=p, respectively. However, as is frequently 
done in traditional quantum mechanics, we shall investigate the Q-represen- 
tation of  the system. Then, instead of  considering momentum as a measure- 
ment, we view P: f~ --* ~ as a function on ~.  

Each Q-fiber, Q - l ( q ) =  {(q,p):p~},  q ~ ,  can be identified with ~. 
Only certain measures on the Q-fibers and certain generalized actions 
S: f~ ~ ~ correspond to traditional quantum states, and these can be 
obtained from natural postulates. We assume that p~ is absolutely continu- 
ous with respect to Lebesgue measure on ~ and that p~  is independent of 
q. We are thus assuming that sets of Lebesgue measure zero are too small 
to have any influence on the outcomes of position measurements. Moreover, 
since there is no reason to distinguish between Q-outcomes, the measures 
p~,  q~ ~, are identical. It follows that there exists a nonnegative Lebesgue- 
measurable function ~ : ~ --, ~ such that 

pqQ(dp) = (2~rh) -1/2~(p) dp 
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on the Q-fiber Q- ~ (q), q ~ ~. With this measure on the Q-fibers and Lebesgue 
measure on the range R(Q)= ~, Q is endowed with the structure of a 
measurement in accordance with (M1) and (M2) of Section 2. 

We now define the generalized action S: f~ ~ ~ as the sum of  a classical 
part plus a quantum fluctuation. We assume that the classical part is propor- 
tional to the classical action qp and the quantum fluctuation is simply a sum 
r/(p) + r/'(q), where 77, 77': ~ ~ ~ are Lebesgue-measurable functions. Taking 
the constant of proportionality to be (h) -I,  we have 

S ~ -, Q P  tq, P) = h  -+ r/(p) + r/'(q) 

Applying (2.10), the (Q, S)-wave function becomes 

= eir f(q)(Z;rc]~)-1/2 f~(p)  eirZ(p) eiqp/ti fQ.s(q) dp 

Defining q~(p)= ~(p)e  in(p) and denoting the inverse Fourier transform 
4~ v (q) of q~ (p) by 7t(q) = ~b v (q), we have 

fQ,s (q) = eiO'(q)(2zrh) -1/2 f (9 (p) e iqp/~ dp 

= eiO'(q) ~(q) 

Since the Q-probability density is given by [fQ, s(q) l 2= I ~(q)[ 2, the factor 
e irz'(q) does not contribute. We therefore make the simplifying assumption 
that r/ ' (q)=0 for all q ~ .  We then have 

S(q ,p)=~+~(p)  (3.1) 

and 

fQ.s (q) = (2zrh)- ,/2 f ~b (p) e iqp/~ dp= ~(q) (3.2) 

Since S is a generalized action, it follows from (2.3) and (2.11) that ~t is a 
unit vector in the Hilbert space HQ=L2(N, dq). This is the usual position 
Hilbert space of traditional quantum mechanics and 7t is the usual wave 
function or state. We thus see that the complex-valued function Vt comes 
from two real-valued functions in a natural way. The function ~ is a nonnega- 
tive a priori weight and 77 is a term of the generalized action. Denoting the 
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Fourier transform of ~" and 0, we have 

el(p) = r (P) = ~(p) e i"(p) 

It follows that ~(p)= [ O(p)[ and 17(p)= arg O(p). This also explains why 
the Fourier transform is ubiquitous in quantum mechanics. It comes about 
because of the qp/h term in the generalized action (3.1). One might argue 
that this ubiquity stems from the fact that the momentum operator is the 
Fourier transform of the position operator. But this presupposes the form 
of the momentum operator, which we now derive from deeper principles. 

Applying (2.14), the (Q, S)-amplitude of P at q becomes 

fo.s(P)(q) = (2zch) -i/2 f p~p (p) eiqp/li de 

= - ih d~ (q) 
dq 

More generally, if n is a positive integer, we obtain 

( Jq; fo,s(P=)(q) = - ih  ~(q) (3.3) 

Applying (2.15), we also have 

Ee,s(Pn)= f[(-in u/(q)l g*(q) dq (3.4) 

which is the usual quantum expectation formula. We conclude from (3.3) 
or (3.4) that P" corresponds to the operator (- in  d/dq) n. 

Now let V: N---> N and define V(Q): f2 ~ N by V(Q)(q,p)= V(q). For 
example, we may think of V(Q) as a potential energy function. The (Q, S)- 
amplitude average of V(Q) becomes 

fo,s[ v(o)](q) = (2rch) -1/2 [" V(q)dp (p) d qp/~ dp 
d 

and (2,15) gives 

= V(q) ~/(q) (3.5) 

Ea,s [ V(Q)] = f V(q) g/(q) ~*(q) dq (3.6) 
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We conclude from (3.5) or (3.6) that V(Q) corresponds to the operator 
which multiplies by V(q). This, together with our observation concerning 
P", gives a derivation of the Bohr correspondence principle. 

We now consider probability distributions. Applying (2.12) for measur- 
able B _  N = R(Q), we have 

PQ,s(B) = fB I ~t(q) l z dq 

which is the usual distribution of Q. It is more interesting to compute 
the probability of A=P-~(B) for the momentum function P. We have, 
from (2.17), 

fo,s(ZA)(q) = (2rch)-~/2 f . dp (p) e eqp/~ dp 

= (2zr h)-,/2 fzs(p)(a (p) e,qp/, ap 

= ( Z , q ~ )  v (q )  

Hence, by (2.16) and the Plancherel formula, we obtain 

[P- ' (S) ]  = f (ZsdP) ~ (q) gt*(q) aq Pe,s 

= f fB , r dp 

Again, this is the usual momentum distribution. One can also derive the 
Liider's conditional probability formula and the Heisenberg uncertainty 
relations from the present formalism (Gudder, 1985, 1988a). 

Until now we have treated time as fixed. We now briefly consider 
dynamics. Let ~t(q, t) be twice differentiable with respect to q and differen- 
tiable with respect to t. Moreover, assume that ~, 3g/Oq, O2Vt/Oq2~L2(R, dq) 
and [L ~tl] = 1. For each te~,  we define the generalized action S: f~ ~ R by 

S(q,p, t) = ~ + a r g  ~)(p, t) 

Moreover, the measurement Q changes with time in the sense that 

UqQ, t(dp) = (2zrli)- l/21~t(p, t)] dp 
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Notice that we have shortened our previous argument by replacing ~(p) and 
r/(p) with ~(p, t) and arg O(p, t), respectively. Our previous formulas now 
hold with ~t(q) replaced by gt(q, t). 

We now derive Schr6dinger's equation from Hamilton's equation of 
classical mechanics dp/dt = -aH/Oq. Suppose that the energy measurement 
has the form 

p2 
H(q, p) = 2m + V(q) 

We now assume that Hamilton's equation holds in the amplitude average. 
Applying (2.14), we have 

dt Pfs(q,P, t) I.tq~.t(dp) = -~q H(q,p) fs(q,p, t) pqQ,t(dp) 

Hence, 

d [(2zrh)-l/2 f p~(p, t) elqP/a dp] 

~[(2zch)-I/2fH( A dp] Oq q, p)~(p, t) e iqp/ti 

Applying (3.3) and (3.5) gives 

d (-ih ~q) ~ I ha O2N + V(q)~t] 
=-~q -2m ~q2 

Interchanging the order of differentiation on the left side of this equation 
and integrating with respect to q gives the Schr6dinger equation 

ih ~ =  h2 ~2~t F V(q)~ 
Ot 2m ~q2 

Finally, we consider spin in the present framework. Suppose our phys- 
ical system Y consists of a single spin-l/2 particle. Since we have already 
treated position and momentum, we shall only consider spin measurements 
for 5 r and ignore its other degrees of freedom. Fix a direction for the z axis 
and assume that the spin in the z direction is known to be +1/2. (For 
simplicity we set h = 1.) We define the sample space ~ = [0, zr], where co ~ 
refers to a direction whose angle to the z axis is co. (By symmetry, the spin 
probabilities should only depend on co.) Let | be a spin-l/2 measurement 
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at an angle 0e[0, zr] to the z axis. Then | f~ ~ {1/2, -1 /2}  and we define 

I - 1 / 2  if 0 < c o < 0  
O(~ 1/2 if O<_co<tr 

(3.7) 

Notice that a specification of o9 uniquely determines the exact spin value in 
every direction simultaneously. Placing the measure dco/2 on the O-fibers 
and counting measure on the range endows O with the structure of a 
measurement in accordance with (M1) and (M2). 

The motivation for our definition of O is the following. When 0 = 0 we 
have |  with certainty and as 0 approaches rr, the outcome - 1 / 2  
becomes more probable until 0 = zr, when O = -  1/2 with certainty. The 
above form for O was chosen since it is the simplest function with these 
properties. 

We now define the generalized action S: ~--* ~ to have the simplest 
possible form, namely S(o9)=o9. The amplitude function then becomes 
fs(cO) = e i~ Applying (2.10), the (| S)-wave function is 

fo 1 ei~O i eiO) fo,s 1 = 1 fs(og) de0 =~ dco = -  (1 + 
1(1/2 ) 2 

( 1 )  l f o  ~fo  ~ " f o s  . . . .  fs(cO) doo = e i~ dco = f  (1 - e  iO) 
' 2 2 -~(-1/2) 2 

Applying (2.11), the probabilities become 

1 = fo,s = l1 (1 +cos 0)=cos  2 -  Po,s ~ 2 4 =2 2 

() (l) 1 ,o l o 
1 = fo,s - ~  l1 ( 1 - c o s  O)=sin 2 -  Po,s --~ =~ - e =~ 2 

Of course, this is the usual probability distribution for the spin in the 0 
direction when the spin in the z direction is + 1/2. 

A similar result holds when the spin in the z direction is known to be 
- 1 / 2 .  We have also investigated the spin-1 case (Gudder, 1991). Moreover, 
we can derive the usual quantum mechanical spin matrices from this formal- 
ism (Gudder, to appear-a). A more detailed analysis provides us with a 
sample space g2 that is independent of the z-direction spin state (Gudder, to 
appear-a). 
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